Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Front Immunol ; 14: 1064459, 2023.
Article in English | MEDLINE | ID: covidwho-2313559

ABSTRACT

The newly emerged coronavirus (SARS-CoV-2) is virulent, contagious, and has rapidly gained many mutations, which makes it highly infectious and swiftly transmissible around the world. SARS-CoV-2 infects people of all ages and targets all body organs and their cellular compartments, starting from the respiratory system, where it shows many deleterious effects, to other tissues and organs. Systemic infection can lead to severe cases that require intensive intervention. Multiple approaches were elaborated, approved, and successfully used in the intervention of the SARS-CoV-2 infection. These approaches range from the utilization of single and/or mixed medications to specialized supportive devices. For critically ill COVID-19 patients with acute respiratory distress syndrome, both extracorporeal membrane oxygenation (ECMO) and hemadsorption are utilized in combination or individually to support and release the etiological factors responsible for the "cytokine storm" underlying this condition. The current report discusses hemadsorption devices that can be used as part of supportive treatment for the COVID-19-associated cytokine storm.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Humans , COVID-19/therapy , SARS-CoV-2 , Cytokines
2.
Vaccines (Basel) ; 11(4)2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2293211

ABSTRACT

In this review work, the authors emphasize the discussion on different emerging variants of SARS-CoV-2 and vaccine effectiveness against them [...].

3.
Eur J Med Chem Rep ; 3: 100013, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-2293210

ABSTRACT

Antivirals already on the market and expertise gained from the SARS and MERS outbreaks are gaining momentum as the most effective way to combat the coronavirus outbreak. SARS-CoV-2 has caused considerable mortality due to respiratory failure, highlighting the immediate need for successful therapies as well as the long-term need for antivirals to combat potential emergent mutants of coronaviruses. There are constant viral mutations are being observed due to which world is experiencing different waves of SARS-CoV-2. If our understanding of the virology and clinical presentation of COVID-19 grows, so does the pool of possible pharmacological targets. In COVID-19, the difficulties of proper analysis of current pre-clinical/clinical data as well as the creation of new evidence concerning drug repurposing will be crucial. The current manuscript aims to evaluate the repurposing of an anti-HIV drug Darunavir Ethanolate in COVID-19 treatment with in silico study and we discuss the therapeutic progress of Darunavir Etanolate, to prevent SARS-CoV-2 replication, which supports its clinical assessment for COVID-19 therapy.

4.
Molecules (Basel, Switzerland) ; 28(5), 2023.
Article in English | EuropePMC | ID: covidwho-2254455

ABSTRACT

The COVID-19 pandemic has flared across every part of the globe and affected populations from different age groups differently. People aged from 40 to 80 years or older are at an increased risk of morbidity and mortality due to COVID-19. Therefore, there is an urgent requirement to develop therapeutics to decrease the risk of the disease in the aged population. Over the last few years, several prodrugs have demonstrated significant anti-SARS-CoV-2 effects in in vitro assays, animal models, and medical practice. Prodrugs are used to enhance drug delivery by improving pharmacokinetic parameters, decreasing toxicity, and attaining site specificity. This article discusses recently explored prodrugs such as remdesivir, molnupiravir, favipiravir, and 2-deoxy-D-glucose (2-DG) and their implications in the aged population, as well as investigating recent clinical trials.

5.
Molecules ; 28(5)2023 Mar 02.
Article in English | MEDLINE | ID: covidwho-2254456

ABSTRACT

The COVID-19 pandemic has flared across every part of the globe and affected populations from different age groups differently. People aged from 40 to 80 years or older are at an increased risk of morbidity and mortality due to COVID-19. Therefore, there is an urgent requirement to develop therapeutics to decrease the risk of the disease in the aged population. Over the last few years, several prodrugs have demonstrated significant anti-SARS-CoV-2 effects in in vitro assays, animal models, and medical practice. Prodrugs are used to enhance drug delivery by improving pharmacokinetic parameters, decreasing toxicity, and attaining site specificity. This article discusses recently explored prodrugs such as remdesivir, molnupiravir, favipiravir, and 2-deoxy-D-glucose (2-DG) and their implications in the aged population, as well as investigating recent clinical trials.


Subject(s)
COVID-19 , Prodrugs , Animals , Humans , SARS-CoV-2 , Pandemics , Phosphorylation , Antiviral Agents/therapeutic use
6.
Clin Complement Med Pharmacol ; 2(1): 100021, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-2254454

ABSTRACT

Currently, the world is facing a Coronavirus pandemic with a grave deficiency of specific therapy for Coronavirus Disease (COVID-19). Moreover, scientists attempt to discover the most refined approach to prevent this condition. Regarding COVID-19 infection, herbal medicines with immunomodulatory effects may offer patients a promising preventive treatment option. Several ayurvedic and Traditional Chinese Medicine (TCM) are effective during this worrisome Coronavirus pandemic i.e. Tinospora cordifolia (Willd.) Miers, Withania somnifera (L.) Dunal, Scutellaria baicalensis Georgi, Curcuma longa L. etc. TCM was shown to be utilized with over 90% efficacy when the COVID-19 pandemic broke out in early 2020. In addition to herbal treatments and nutraceutical drugs, dietary supplements such as vitamins and amino acid derivatives also play a significant part in COVID-19 management. Diet can assist in regulating inflammation, while nutraceuticals can aid in the prevention of viral invasion. Functional amino acids (e.g., arginine, cysteine, glutamate, glutamine, glycine, taurine, and tryptophan) and glutathione, which are all abundant in animal-sourced foodstuffs, are crucial for optimum immunity and health in humans and animals. The goal of this article is to thoroughly evaluate recent statistics on the effectiveness of herbal medicines in COVID-19, the antiviral activity of nutraceuticals, and the significance of these results in creating dietary supplements that would enhance innate immunity and contribute as preventive measures against severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2).

7.
Vaccines (Basel) ; 11(3)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2254453

ABSTRACT

Coronavirus disease 2019 (COVID-19) infection is currently a great cause of concern for the healthcare sector around the globe. SARS-CoV-2 is an RNA virus that causes a serious infection that is associated with numerous adverse effects and multiple complications associated with different organs and systems during its pathogenic cycle in humans. Individuals affected by COVID-19, especially elderly populations and immunocompromised people, are greatly vulnerable to opportunistic fungal pathogens. Aspergillosis, invasive candidiasis, and mucormycosis are widespread fungal coinfections in COVID-19 patients. Other fungal infections that are rare but are exhibiting increased incidence in the current scenario include infections caused by Pneumocystis jirovecii, Histoplasma sp., Cryptococcus sp., etc. By producing virulent spores, these pathogens increase the severity of the disease and increase the morbidity and fatality rates in COVID-19 patients globally. These infections generally occur in patients recovering from COVID-19 infection, resulting in rehospitalization. Older and immunocompromised individuals are at higher risk of developing opportunistic fungal infections. This review focuses on understanding the opportunistic fungal infections prevalent in COVID-19 patients, especially elderly people. We have also highlighted the important preventive methods, diagnostic approaches, and prophylactic measures for fungal infections.

8.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2254451

ABSTRACT

mRNA vaccines take advantage of the mechanism that our cells use to produce proteins. Our cells produce proteins based on the knowledge contained in our DNA; each gene encodes a unique protein. The genetic information is essential, but cells cannot use it until mRNA molecules convert it into instructions for producing specific proteins. mRNA vaccinations provide ready-to-use mRNA instructions for constructing a specific protein. BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) both are newly approved mRNA-based COVID-19 vaccines that have shown excellent protection and efficacy. In total, there are five more mRNA-based vaccine candidates for COVID-19 under different phases of clinical development. This review is specifically focused on mRNA-based vaccines for COVID-19 covering its development, mechanism, and clinical aspects.

9.
Biomedicines ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: covidwho-2254450

ABSTRACT

Propolis is a mass of chemically diverse phytoconstituents with gummy textures that are naturally produced by honeybees upon collection of plant resins for utilization in various life processes in beehives. Since ancient times, propolis has been a unique traditional remedy globally utilized for several purposes, and it has secured value in pharmaceutical and nutraceutical areas in recent years. The chemical composition of propolis comprises diverse constituents and deviations in the precise composition of the honeybee species, plant source used for propolis production by bees, climate conditions and harvesting season. Over 300 molecular structures have been discovered from propolis, and important classes include phenolic acids, flavonoids, terpenoids, benzofurans, benzopyrene and chalcones. Propolis has also been reported to have diverse pharmacological activities, such as antidiabetic, anti-inflammatory, antioxidant, anticancer, immunomodulatory, antibacterial, antiviral, antifungal, and anticaries. As chronic diseases have risen as a global health threat, abundant research has been conducted to track propolis and its constituents as alternative therapies for chronic diseases. Several clinical trials have also revealed the potency of propolis and its constituents for preventing and curing some chronic diseases. This review explores the beneficial effect of propolis and its active constituents with credible mechanisms and computational studies on chronic diseases.

10.
Pharmacol Rep ; 75(2): 249-265, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2254448

ABSTRACT

Clinical management of COVID-19 has been a daunting task. Due to the lack of specific treatment, vaccines have been regarded as the first line of defence. Innate responses and cell-mediated systemic immunity, including serum antibodies, have been the primary focus of practically all studies of the immune response to COVID-19. However, owing to the difficulties encountered by the conventional route, alternative routes for prophylaxis and therapy became the need of the hour. The first site invaded by SARS-CoV-2 is the upper respiratory tract. Nasal vaccines are already in different stages of development. Apart from prophylactic purposes, mucosal immunity can be exploited for therapeutic purposes too. The nasal route for drug delivery offers many advantages over the conventional route. Besides offering a needle-free delivery, they can be self-administered. They present less logistical burden as there is no need for refrigeration. The present article focuses on various aspects of nasal spray for eliminating COVID-19.


Subject(s)
COVID-19 , Vaccines , Humans , Nasal Sprays , SARS-CoV-2 , Administration, Intranasal
11.
Expert Rev Vaccines ; 21(11): 1603-1620, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2254449

ABSTRACT

INTRODUCTION: Several vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed since the inception of the coronavirus disease 2019 (COVID-19) in December 2019, at unprecedented speed. However, these rapidly developed vaccines raised many questions related to the efficacy and safety of vaccines in different communities across the globe. Various hypotheses regarding COVID-19 and its vaccines were generated, and many of them have also been answered with scientific evidence. Still, there are many myths/misinformation related to COVID-19 and its vaccines, which create hesitancy for COVID-19 vaccination, and must be addressed critically to achieve success in the battle against the pandemic. AREA COVERED: The development of anti-SARS-CoV-2 vaccines against COVID-19, their safety and efficacy, and myths/misinformation relating to COVID-19 and vaccines are presented. EXPERT OPINION: In this pandemic, we have seen a global collaborative effort of researchers, governments, and industry, supported by billions of dollars in funding, have allowed the development of vaccines far more quickly than in the past. Vaccines go through rigorous testing, analysis, and evaluations in clinical settings prior to their approval, even if they are approved for emergency use. Despite the myths, vaccination represents an important strategy to get back to normality.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Pandemics/prevention & control , Vaccination
12.
Future science OA ; 8(9), 2023.
Article in English | Europe PMC | ID: covidwho-2239681

ABSTRACT

SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery. Plain language summary COVID-19 infection has reported in the development several other infections and co-morbidity in patients. The present review discusses risk and management strategies in patients suffeting from co-infections caused by COVID-19 infection.

13.
Lancet Respir Med ; 11(1): e4, 2023 01.
Article in English | MEDLINE | ID: covidwho-2239682

Subject(s)
Virus Diseases , Humans
14.
Vaccines (Basel) ; 11(1)2023 Jan 11.
Article in English | MEDLINE | ID: covidwho-2239680

ABSTRACT

Omicron variants have highly influenced the entire globe. It has a high rate of transmissibility, which makes its management tedious. There are various subtypes of omicron, namely BA.1, BA.2, BA.3, BA.4, and BA.5. Currently, one omicron subvariant BF.7 is also immersed in some parts of India. Further studies are required for a better understanding of the new immersing SARS-CoV-2 subvariant of the omicron. They differ in the mutation of the spike proteins, which alters their attachment to the host receptor and hence modifies their virulence and adaptability. Delta variants have a great disastrous influence on the entire world, especially in India. While overcoming it, another mutant catches the pace. The Indian population is highly affected by omicron variants. It alters the entire management and diagnosis system against COVID-19. It demanded forcemeat in the health care system, both qualitatively and quantitively, to cope with the omicron wave. The alteration in spike protein, which is the major target of vaccines, leads to varied immunization against the subvariants. The efficacy of vaccines against the new variant was questioned. Every vaccine had a different shielding effect on the new variant. The hesitancy of vaccination was a prevalent factor in India that might have contributed to its outbreak. The prevalence of omicron, monkeypox, and tomato flu shared some similarities and distinct features when compared to their influence on the Indian population. This review emphasizes the changes omicron brings with it and how the Indian health care system outrage this dangerous variant.

15.
Future Sci OA ; 8(9): FSO819, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2239679

ABSTRACT

SARS-CoV-2 was discovered in Wuhan, China and quickly spread throughout the world. This deadly virus moved from person to person, resulting in severe pneumonia, fever, chills and hypoxia. Patients are still experiencing problems after recovering from COVID-19. This review covers COVID-19 and associated issues following recovery from COVID-19, as well as multiorgan damage risk factors and treatment techniques. Several unusual illnesses, including mucormycosis, white fungus infection, happy hypoxia and other systemic abnormalities, have been reported in recovered individuals. In children, multisystem inflammatory syndrome with COVID-19 (MIS-C) is identified. The reasons for this might include uncontrollable steroid usage, reduced immunity, uncontrollable diabetes mellitus and inadequate care following COVID-19 recovery.


COVID-19 infection has reported in the development several other infections and co-morbidity in patients. The present review discusses risk and management strategies in patients suffeting from co-infections caused by COVID-19 infection.

16.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2239678

ABSTRACT

The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.

17.
Vaccines (Basel) ; 11(2)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2228749

ABSTRACT

Accurate identification at an early stage of infection is critical for effective care of any infectious disease. The "coronavirus disease 2019 (COVID-19)" outbreak, caused by the virus "Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)", corresponds to the current and global pandemic, characterized by several developing variants, many of which are classified as variants of concern (VOCs) by the "World Health Organization (WHO, Geneva, Switzerland)". The primary diagnosis of infection is made using either the molecular technique of RT-PCR, which detects parts of the viral genome's RNA, or immunodiagnostic procedures, which identify viral proteins or antibodies generated by the host. As the demand for the RT-PCR test grew fast, several inexperienced producers joined the market with innovative kits, and an increasing number of laboratories joined the diagnostic field, rendering the test results increasingly prone to mistakes. It is difficult to determine how the outcomes of one unnoticed result could influence decisions about patient quarantine and social isolation, particularly when the patients themselves are health care providers. The development of point-of-care testing helps in the rapid in-field diagnosis of the disease, and such testing can also be used as a bedside monitor for mapping the progression of the disease in critical patients. In this review, we have provided the readers with available molecular diagnostic techniques and their pitfalls in detecting emerging VOCs of SARS-CoV-2, and lastly, we have discussed AI-ML- and nanotechnology-based smart diagnostic techniques for SARS-CoV-2 detection.

18.
Vaccines (Basel) ; 11(1)2022 Dec 25.
Article in English | MEDLINE | ID: covidwho-2228748

ABSTRACT

The zoonotic SARS-CoV-2 virus was present before the onset of the pandemic. It undergoes evolution, adaptation, and selection to develop variants that gain high transmission rates and virulence, resulting in the pandemic. Structurally, the spike protein of the virus is required for binding to ACE2 receptors of the host cells. The gene coding for the spike is known to have a high propensity of mutations, as a result generating numerous variants. The variants can be generated by random point mutations or recombination during replication. However, SARS-CoV-2 can also produce hybrid variants on co-infection of the host by two distinct lineages of the virus. The genomic sequences of the two variants undergo recombination to produce the hybrid variants. Additionally, these sub-variants also contain numerous mutations from both the parent variants, as well as some novel mutations unique to the hybrids. The hybrid variants (XD, XE, and XF) can be identified through numerous techniques, such as peak PCR, NAAT, and hybrid capture SARS-CoV-2 NGS (next generation sequencing) assay, etc., but the most accurate approach is genome sequencing. There are numerous immunological diagnostic assays, such as ELISA, chemiluminescence immunoassay, flow-cytometry-based approaches, electrochemiluminescence immunoassays, neutralization assays, etc., that are also designed and developed to provide an understanding of the hybrid variants, their pathogenesis, and other reactions. The objective of our study is to comprehensively analyze the variants of SARS-CoV-2, especially the hybrid variants. We have also discussed the techniques available for the identification of hybrids, as well as the immunological assays and studies for analyzing the hybrid variants.

19.
Process Biochem ; 127: 66-81, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2221248

ABSTRACT

The pandemic COVID-19 has spread widely throughout the globe and has been responsible for millions of deaths worldwide. Recently, it has been identified that there is no specific and 100% effective treatment available to manage the infection especially for the severe cases. A significant amount of research efforts and clinical trials have been undertaken globally and many more are underway to find the potential treatment option. Earlier, convalescent plasma or hyperimmune immunoglobulin was effectively used in the treatment of many endemic or epidemic viral infections as a part of passive immunization. In this article, we have touched upon the immunopathology of COVID-19 infection, a basic understanding of convalescent plasma, it's manufacturing as well as evaluation, and have reviewed the scientific developments focussing on the potential of convalescent plasma vis-à-vis other modalities for the management of COVID-19. The article also covers various research approaches, clinical trials conducted globally, and the clinical trials which are at various stages for exploring the efficacy and safety of the convalescent plasma therapy (CPT) to predict its future perspective to manage COVID-19.

20.
Vaccines (Basel) ; 10(12)2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2163727

ABSTRACT

An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19's launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings.

SELECTION OF CITATIONS
SEARCH DETAIL